- algorithm approximation art bar beauty binary binomial coefficients birthday book review Carnival of Mathematics chocolate combinatorics complex consecutive cookies counting curve decadic decimal diagrams divisibility elements equivalence expansion factorization fibonacci finite fractal game games graph groups Haskell history hyperbinary idempotent identity integers interactive irrational Ivan Niven Lagrange lehmer lucas MaBloWriMo making Mersenne nim number numbers objects omega order permutations pi prime primes problem programming proof puzzle random rectangles repunit review sequence squares strategy subgroups symmetry test triangular video visualization X
### Blogroll

### Fun

### Reference

### Categories

- algebra (43)
- arithmetic (49)
- books (26)
- calculus (6)
- challenges (50)
- combinatorics (8)
- complex numbers (5)
- computation (38)
- convergence (9)
- counting (28)
- famous numbers (44)
- fibonacci (14)
- fractals (12)
- games (23)
- geometry (33)
- golden ratio (8)
- group theory (26)
- humor (6)
- induction (7)
- infinity (17)
- iteration (23)
- links (72)
- logic (6)
- meta (37)
- modular arithmetic (24)
- number theory (66)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (63)
- people (19)
- pictures (36)
- posts without words (6)
- primes (30)
- probability (5)
- programming (17)
- proof (56)
- puzzles (10)
- recursion (8)
- review (18)
- sequences (27)
- solutions (28)
- teaching (9)
- trig (3)
- Uncategorized (4)
- video (18)

### Archives

- February 2016 (4)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

### Meta

# Category Archives: infinity

## u-tube

[This is the eighth in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does "close to" mean?, The decadic metric, Infinite decadic numbers, More fun with infinite decadic … Continue reading

Posted in computation, convergence, infinity, iteration, modular arithmetic, number theory, programming
Tagged decadic, Haskell, idempotent, streaming, u
2 Comments

## A self-square number

[This is the seventh in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does “close to” mean?, The decadic metric, Infinite decadic numbers, More fun with infinite decadic … Continue reading

Posted in arithmetic, infinity, iteration, modular arithmetic, proof
Tagged decadic, idempotent, self, square
12 Comments

## More fun with infinite decadic numbers

This is the sixth in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does “close to” mean?, The decadic metric, Infinite decadic numbers). Last time I left you … Continue reading

Posted in arithmetic, infinity, number theory
Tagged decadic, decimal, fractions, integers, representation
4 Comments

## Infinite decadic numbers

To recap: we’ve now defined the decadic metric on integers by where is not divisible by 10, and also . According to this metric, two numbers are close when their difference is decadically small. So, for example, and are at … Continue reading

Posted in arithmetic, convergence, infinity, number theory
Tagged decadic, negative, numbers
7 Comments

## Book review: Roads to Infinity

What is infinity? What is proof? These are two of the biggest questions mathematicians have grappled with over the years. In this well-written and fascinating book, John Stillwell takes us on a tour through some of the answers to these … Continue reading

Posted in arithmetic, books, computation, induction, infinity, logic, proof, review
Tagged infinity, John Stillwell, proof, roads

## Rational numbers and decimal expansions

As you may remember from school, rational numbers have a terminating or eventually repeating (periodic) decimal expansion, whereas irrational numbers don’t. So, for example, 0.123123123123…, with 123 repeating forever, is rational (in fact, it is equal to 41/333), whereas something … Continue reading

## Recounting the Rationals, part II (fractions grow on trees!)

Today I’d like to continue my exposition of the paper “Recounting the Rationals”, which I introduced in a previous post. Recall that our goal is to come up with a “nice” list of the positive rational numbers — where by … Continue reading

Posted in infinity, number theory, pattern, recursion, sequences
22 Comments