Category Archives: modular arithmetic

Mersenne primes and the Lucas-Lehmer test

Mersenne numbers, named after Marin Mersenne, are numbers of the form . The first few Mersenne numbers are therefore , , , , , and so on. Mersenne numbers come up all the time in computer science (for example, is … Continue reading

Posted in arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes | Tagged , , , , | 3 Comments

Visualizing Pascal’s triangle remainders

In a comment on my previous post, Juan Valera mentioned something about visualizing multiples of prime numbers in Pascal’s Triangle: In college, there was a poster with different Pascal Triangles, each of them highlighting the multiples of different prime numbers. … Continue reading

Posted in fractals, modular arithmetic, pascal's triangle, pattern, pictures | Tagged , , | 15 Comments

Fibonacci multiples, solution 1

In a previous post, I challenged you to prove If evenly divides , then evenly divides , where denotes the th Fibonacci number (). Here’s one fairly elementary proof (though it certainly has a few twists!). Pick some arbitrary and … Continue reading

Posted in fibonacci, modular arithmetic, number theory, pattern, pictures, proof, sequences | Tagged , , , | 5 Comments

u-tube

[This is the eighth in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does "close to" mean?, The decadic metric, Infinite decadic numbers, More fun with infinite decadic … Continue reading

Posted in computation, convergence, infinity, iteration, modular arithmetic, number theory, programming | Tagged , , , , | 2 Comments

A self-square number

[This is the seventh in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does "close to" mean?, The decadic metric, Infinite decadic numbers, More fun with infinite decadic … Continue reading

Posted in arithmetic, infinity, iteration, modular arithmetic, proof | Tagged , , , | 12 Comments

Fun with repunit divisors: more solutions

In Fun with repunit divisors I posed the following challenge: Prove that every prime other than 2 or 5 is a divisor of some repunit. In other words, if you make a list of the prime factorizations of repunits, every … Continue reading

Posted in arithmetic, iteration, modular arithmetic, number theory, primes, programming, proof, solutions | Tagged

Fun with repunit divisors: proofs

As promised, here are some solutions to the repunit puzzle posed in my previous post. (Stop reading now if you don’t want to see solutions yet!) Prove that every prime other than 2 or 5 is a divisor of some … Continue reading

Posted in iteration, modular arithmetic, number theory, pattern, primes, proof | Tagged , , , , | 1 Comment

Fun with repunit divisors

In honor of today’s date (11/11/11), here’s a fun little problem (and some follow-up problems) I’ve seen posed in a few places (for example, here is a very similar problem). If I recall correctly, it was also a problem on … Continue reading

Posted in arithmetic, challenges, modular arithmetic, number theory, primes | Tagged , , | 16 Comments

A curiosity

From Futility Closet, a fun blog of random tidbits I enjoy reading, comes the following curious sequence of equations, attributed to J.A.H. Hunter: I managed to extend this pattern for a few more digits before I got bored. Does it … Continue reading

Posted in arithmetic, modular arithmetic, number theory, pattern | 20 Comments

Triangunit divisors and quadratic reciprocity

Recall that the triangunit numbers are defined as the numbers you get by appending the digit 1 to the end of triangular numbers. Put another way, where denotes the th triangular number, and the th triangunit number. The challenge, posed … Continue reading

Posted in arithmetic, modular arithmetic, number theory, primes, proof | Tagged , , , , | 5 Comments