- algorithm algorithms approximation arithmetic art Babylonian beauty binary binomial coefficients book review bracelets carnival Carnival of Mathematics change chess chess board combinatorics complex consecutive cookies counting decadic decimal derivatives diagrams divisibility divisors education expansion factorization fibonacci floor foundations fractal fractions game games GIMPS graph graphs Haskell history humor hyperbinary idempotent integers integral interactive intuition irrational irrationality Ivan Niven latex logic Mersenne metric number numbers permutations pi prime primes programming proof puzzle random rectangles repunit review sequence squares symmetry triangular video visualization
### Blogroll

### Fun

### Reference

### Categories

- algebra (14)
- arithmetic (35)
- books (25)
- calculus (6)
- challenges (46)
- combinatorics (6)
- complex numbers (5)
- computation (30)
- convergence (9)
- counting (28)
- famous numbers (38)
- fibonacci (14)
- fractals (12)
- games (17)
- geometry (29)
- golden ratio (8)
- group theory (3)
- humor (6)
- induction (7)
- infinity (17)
- iteration (15)
- links (70)
- logic (6)
- meta (37)
- modular arithmetic (10)
- number theory (47)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (54)
- people (19)
- pictures (28)
- posts without words (3)
- primes (23)
- probability (3)
- programming (17)
- proof (42)
- puzzles (10)
- recursion (8)
- review (17)
- sequences (26)
- solutions (24)
- teaching (9)
- trig (3)
- Uncategorized (2)
- video (18)

### Archives

- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

### Meta

# Tag Archives: counting

## PIE day

[This is part six in an ongoing series; previous posts can be found here: Differences of powers of consecutive integers, Differences of powers of consecutive integers, part II, Combinatorial proofs, Making our equation count, How to explain the principle of … Continue reading

## Penn Alexander: subset counting and Gray codes

I’m volunteering again this year with the middle school math club at Penn Alexander. I’m going to try to be better this year about posting what we do each week, for posterity’s sake and in case it inspires anyone else! … Continue reading

## More cookies

I recently received the following interesting problem from Shadowcat, which is a generalization of the cookie problem I’ve written about previously. We again want to count the ways to distribute identical cookies to non-identical students, with the twist that we … Continue reading

## Idempotent endofunctions

Via Topological Musings comes another neat little counting problem. A function is idempotent if applying it twice gives the same result as applying it once: that is, for any input x. Endofunction is just a fancy way of talking about … Continue reading

## Distributing cookies: solutions

And now for some solutions to the cookie distribution problem. I’m actually going to describe four different methods of solution, and thereby (re)discover some nice combinatorial identities along the way. This is what I love about combinatorics—you discover all this … Continue reading

Posted in counting, proof, solutions
Tagged binomial coefficients, combinatorial identities, combinatorics, cookies, counting, distribution
4 Comments

## Chessboard counting: solutions and further challenges

And now for some solutions to the chessboard counting challenges. The first challenge was to count the number of squares of any size on an 8×8 chessboard. The key here (as with many counting problems) is to break the problem … Continue reading

Posted in challenges, counting, solutions
Tagged chess, chess board, counting, rectangles, squares
2 Comments

## Chessboard counting

I am currently doing a unit on combinatorics (the mathematical study of counting) with my precalculus students, and I was inspired to post a few counting-themed challenge problems for your enjoyment. (Also, it’s my spring break!) As you probably know, … Continue reading