Inspired by a recent post over at Foxmaths!, here’s an interesting challenge question for you to think about:
Suppose I give you the sequence of integers , and so on, where
denotes the greatest integer less than or equal to x—in other words, it means to round down. So the first number in the sequence would be
, the next number would be
, and so on. Given this sequence, what can you learn about
(assuming that you didn’t already know anything about it)?
A more general question: given the sequence of integers for k = 1,2,3…, what can you learn about r?
The answer has many interesting connections to the theory of irrational numbers and continued fractions.
Well, the obvious thing one can learn given just |(10^n)r| is the first n digits of the decimal expansion of r. I presume there’s supposed to be more to learn?
Well done! But you can actually learn the decimal expansion of r faster than that.
Pingback: Predicting pi: pretty graphs and convergents « The Math Less Traveled