### Meta

### Categories

- algebra (46)
- arithmetic (74)
- books (30)
- calculus (7)
- challenges (56)
- combinatorics (21)
- complex numbers (6)
- computation (71)
- convergence (9)
- counting (32)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (71)
- golden ratio (8)
- group theory (27)
- humor (6)
- induction (7)
- infinity (19)
- iteration (24)
- links (76)
- logic (9)
- meta (43)
- modular arithmetic (24)
- number theory (93)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (95)
- people (21)
- pictures (71)
- posts without words (28)
- primes (52)
- probability (6)
- programming (20)
- proof (83)
- puzzles (18)
- recursion (16)
- review (21)
- sequences (28)
- solutions (30)
- teaching (14)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Monthly Archives: November 2011

## Sigmas and sums of squares

Commenter Rachel recently asked, How would you find the sum of ? See here for an explanation of sigma notation—in this case it denotes the sum Of course, for any particular value of we can just plug in values and … Continue reading

## Dimensions: go watch! now!

I finally got around to watching the Dimensions videos, which I mentioned once before. They are super cool and will be sure to blow your mind! They start by explaining some simple tools (stereographic projection) and intuition (with references to … Continue reading

Posted in fractals, geometry, links, video
Tagged Dimensions, fibration, polytope, projection, video
2 Comments

## Book review: Viewpoints: Mathematical Perspective and Fractal Geometry in Art

This book is certainly quite different from the sort I usually read and review—but I am always interested in new and creative ways to teach mathematics! This is quite a fun book. It’s all about visual art and some of … Continue reading

## Fun with repunit divisors: more solutions

In Fun with repunit divisors I posed the following challenge: Prove that every prime other than 2 or 5 is a divisor of some repunit. In other words, if you make a list of the prime factorizations of repunits, every … Continue reading

Posted in arithmetic, iteration, modular arithmetic, number theory, primes, programming, proof, solutions
Tagged repunit

## Fun with repunit divisors: proofs

As promised, here are some solutions to the repunit puzzle posed in my previous post. (Stop reading now if you don’t want to see solutions yet!) Prove that every prime other than 2 or 5 is a divisor of some … Continue reading

Posted in iteration, modular arithmetic, number theory, pattern, primes, proof
Tagged divisibility, Fermat, prime, proof, repunit
1 Comment

## Fun with repunit divisors

In honor of today’s date (11/11/11), here’s a fun little problem (and some follow-up problems) I’ve seen posed in a few places (for example, here is a very similar problem). If I recall correctly, it was also a problem on … Continue reading

Posted in arithmetic, challenges, modular arithmetic, number theory, primes
Tagged divisors, primes, repunit
16 Comments