Sigmas and sums of squares

Commenter Rachel recently asked,

How would you find the sum of \displaystyle \sum_{i=1}^n (i^2 + 3i + 4)?

See here for an explanation of sigma notation—in this case it denotes the sum

(1^2 + 3\cdot 1 + 4) + (2^2 + 3\cdot 2 + 4) + \dots

Of course, for any particular value of n we can just plug in values and do a bunch of adding. But I interpret Rachel’s question to mean “can we find an algebraic expression in terms of n which lets us compute the sum more quickly than actually adding the individual terms?”

Let’s try!

First, we observe that

\displaystyle \sum_i (X_i + Y_i) = \left(\sum_i X_i \right) + \left(\sum_i Y_i \right)

Why? If you think about it a bit, you can see that the same terms show up on the left and the right, just in a different order: the left side is (X_1 + Y_1) + (X_2 + Y_2) + \dots whereas the right side is (X_1 + X_2 + \dots) + (Y_1 + Y_2 + \dots). Since addition is associative (a + (b + c) = (a + b) + c) and commutative (a + b = b + a) these are equal.

Next, we observe that

\displaystyle \sum_i c X_i = c \sum_i X_i,

that is, (c X_1 + c X_2 + \dots) = c (X_1 + X_2 + \dots). This is because multiplication distributes over addition.

So, we have \displaystyle \sum_{i=1}^n (i^2 + 3i + 4) = \sum_{i=1}^n i^2 + 3 \sum_{i=1}^n i + \sum_{i=1}^n 4.

\sum_{i=1}^n 4 is just n copies of 4, so it is equal to 4n. I’ve written before about \sum_{i=1}^n i; it is equal to n(n+1)/2. So far, we have

\displaystyle \sum_{i=1}^n (i^2 + 3i + 4) = \frac{3n(n+1)}{2} + 4n + \sum_{i=1}^n i^2.

What about that pesky \sum_{i=1}^n i^2? Can it be simplified at all?

It can, and I know of a few different ways to figure it out. I’ll show you one of them today (and hopefully others in the future).

Consider the sum

\displaystyle \sum_{i=1}^n ((i+1)^3 - i^3)

For example, if n = 4 we have (2^3 - 1^3) + (3^3 - 2^3) + (4^3 - 3^3) + (5^3 - 4^3). Notice that we end up with both 2^3 and -2^3, 3^3 and -3^3… in fact, everything cancels except the -1^3 at the beginning and the 5^3 at the end. I hope you can see that in general,

\displaystyle \sum_{i=1}^n ((i+1)^3 - i^3) = (n+1)^3 - 1

This sort of sum is called a “telescoping” sum, because the whole thing “collapses” like one of those old-school telescopes that pirates use.

However, we can also expand out the (i+1)^3 and then simplify:

\displaystyle \begin{array}{rcl} \sum_{i=1}^n ((i+1)^3 - i^3) & = & \sum_{i=1}^n (i^3 + 3i^2 + 3i + 1 - i^3) \\ & = & \sum_{i=1}^n (3i^2 + 3i + 1) \\ & = & 3 \sum_{i=1}^n i^2 + 3 \sum_{i=1}^n i + \sum_{i=1}^n 1 \\ & = & 3 \sum_{i=1}^n i^2 + \frac{3n(n+1)}{2} + n \end{array}

So now we know that

\displaystyle (n+1)^3 - 1 = 3 \sum_{i=1}^n i^2 + \frac{3n(n+1)}{2} + n

since both sides are equal to \displaystyle \sum_{i=1}^n ((i+1)^3 - i^3). From here we just need some algebra to put \displaystyle \sum_{i=1}^n i^2 on one side and everything else on the other, and clean things up a bit to obtain… well, I’ll let you finish working it out. =)

About Brent

Associate Professor of Computer Science at Hendrix College. Functional programmer, mathematician, teacher, pianist, follower of Jesus.
This entry was posted in algebra and tagged , , , , . Bookmark the permalink.

6 Responses to Sigmas and sums of squares

  1. Rachel says:

    Thank you so much!!! Very thorough!! You are a lifesaver

  2. I prefer writing the sum in terms of binomial coefficients because \sum_{i=0}^n \binom{i}{k}=\binom{n+1}{k+1}.

    Since \binom{i}{2}=\frac{1}{2}i^2-\frac{1}{2}i, then i^2+3i+4=2\binom{i}{2}+4\binom{i}{1}+4.

    We can conclude that \sum_{i=1}^n (i^2+3i+4)=\sum_{i=1}^n 2\binom{i}{2}+4\binom{i}{1}+4=2\binom{n+1}{3}+4\binom{n+1}{2}+4n, which can be expanded if desired.

    • Brent says:

      Aha, very clever! I will have to remember this technique — expressing polynomials using binomial coefficients as a basis. Actually, now that I think about it, this is essentially the same as using a basis involving falling powers (like x^{\underline n} = x (x - 1) (x - 2) \dots (x - n + 1)) which allows one to do discrete calculus (which I learned from Graham, Knuth and Patashnik’s Concrete Mathematics). I just hadn’t remembered the connection to binomial coefficients. I hope to write about it in a future post.

  3. zariski says:

    All Korean high school students must recite and memorize compulsorily these formulas
    \sum_{i=1}^{n}i = \frac{n(n+1)}{2}
    \sum_{i=1}^{n}i^2 = \frac{n(n+1)(2n+1)}{6}
    \sum_{i=1}^{n}i^3 = \left( \frac{n(n+1)}{2} \right)^2
    to solve every sum of polynomial whose degree is less than fast as possible.

    Thus, most of Korean high school student will solve this problem like this :
    \sum i^2 + 3\sum i + \sum 4 = \frac{n(n+1)(2n+1)}{6} + 3  \frac{n(n+1)}{2} +4n

    This solution is not fun. I like yours. 🙂

    • Brent says:

      Yes, I happen to have these memorized too, but only because I’ve seen them enough times. I was just trying to show how you would actually come up with these formulas in the first place!

    • inquisitor says:

      And every Chinese schoolboy knows that if you give a man a fish, you’ve fed him for a day. But if you teach him how to fish, you’ve fed him for a lifetime.

Comments are closed.