Recall the chocolate bar game from my last post, whose winning and losing positions can be visualized like this:
Here’s a list of some losing positions on or above the main diagonal (dark blue squares in the above picture), ordered by -coordinate, along with their binary representations. Since the game is symmetric, if
is a losing position then so is
. What patterns do you notice? Can you connect them to the above visualization?
x | y | x (binary) | y (binary) |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 3 | 1 | 11 |
1 | 7 | 1 | 111 |
1 | 15 | 1 | 1111 |
1 | 31 | 1 | 11111 |
2 | 2 | 10 | 10 |
2 | 5 | 10 | 101 |
2 | 11 | 10 | 1011 |
2 | 23 | 10 | 10111 |
2 | 47 | 10 | 101111 |
3 | 3 | 11 | 11 |
3 | 7 | 11 | 111 |
3 | 15 | 11 | 1111 |
3 | 31 | 11 | 11111 |
4 | 4 | 100 | 100 |
4 | 9 | 100 | 1001 |
4 | 19 | 100 | 10011 |
4 | 39 | 100 | 100111 |
5 | 5 | 101 | 101 |
5 | 11 | 101 | 1011 |
5 | 23 | 101 | 10111 |
6 | 6 | 110 | 110 |
6 | 13 | 110 | 1101 |
6 | 27 | 110 | 11011 |
7 | 7 | 111 | 111 |
7 | 15 | 111 | 1111 |
7 | 31 | 111 | 11111 |
8 | 8 | 1000 | 1000 |
8 | 17 | 1000 | 10001 |
8 | 35 | 1000 | 100011 |
9 | 9 | 1001 | 1001 |
9 | 19 | 1001 | 10011 |
9 | 39 | 1001 | 100111 |
10 | 10 | 1010 | 1010 |
10 | 21 | 1010 | 10101 |
11 | 11 | 1011 | 1011 |
11 | 23 | 1011 | 10111 |
12 | 12 | 1100 | 1100 |
12 | 25 | 1100 | 11001 |
13 | 13 | 1101 | 1101 |
13 | 27 | 1101 | 11011 |
14 | 14 | 1110 | 1110 |
14 | 29 | 1110 | 11101 |
15 | 15 | 1111 | 1111 |
15 | 31 | 1111 | 11111 |
16 | 16 | 10000 | 10000 |
16 | 33 | 10000 | 100001 |
17 | 17 | 10001 | 10001 |
18 | 18 | 10010 | 10010 |
19 | 19 | 10011 | 10011 |
20 | 20 | 10100 | 10100 |
21 | 21 | 10101 | 10101 |
22 | 22 | 10110 | 10110 |
23 | 23 | 10111 | 10111 |
24 | 24 | 11000 | 11000 |
25 | 25 | 11001 | 11001 |
Pingback: The chocolate bar game: losing positions characterized | The Math Less Traveled