# Monthly Archives: November 2017

## Euler’s Theorem: proof by modular arithmetic

In my last post I explained the first proof of Fermat’s Little Theorem: in short, and hence . Today I want to show how to generalize this to prove Euler’s Totient Theorem, which is itself a generalization of Fermat’s Little … Continue reading

Posted in number theory, primes, proof | Tagged , , , | Comments Off on Euler’s Theorem: proof by modular arithmetic

## Fermat’s Little Theorem: proof by modular arithmetic

In a previous post I explained four (mostly) equivalent statements of Fermat’s Little Theorem (which I will abbreviate “FlT”—not “FLT” since that usually refers to Fermat’s Last Theorem, whose proof I am definitely not qualified to write about!). Today I … Continue reading

Posted in number theory, primes, proof | Tagged , , | 8 Comments

## Four formats for Fermat: correction!

In my previous post I explained three variants on Fermat’s Little Theorem, as well as a fourth, slightly more general variant, which it turns out is often called Euler’s Totient Theorem. Here’s what I said: If and is any integer, … Continue reading

Posted in number theory, primes | Tagged , , , , , , | 4 Comments