Book review: The Mathematics of Various Entertaining Subjects, Volume 3

I have a bunch of books in the queue to review—I hope to begin writing these more regularly again!

[Disclosure of Material Connection: Princeton Press kindly provided me with a free review copy of this book. I was not required to write a positive review. The opinions expressed are my own.]

The Mathematics of Various Entertaining Subjects, Volume 3: The Magic of Mathematics
Jennifer Beineke and Jason Rosenhouse, eds.
Princeton University Press, 2019

The MOVES conference takes place every two years in New York. MOVES is an acronym for “The Mathematics of Various Entertaining Subjects”, and the conference is a celebration of math that isn’t necessarily considered an Important Research Topic, and doesn’t necessarily have Important Applications—but simply math that is fun for its own sake. (Although in hindsight, math that starts out as Just For Fun often seems to end up with important applications too—for example, think of graph theory or probability theory.) The most recent conference took place just a few months ago, in August 2019; the next one will be in August 2021 (you can already register if you like to plan that far ahead!).

This book is basically the conference proceedings from 2017—a collection of papers that were presented at the conference, published all together in book form. So it’s important to state at the outset that although the topics are entertaining, this really is a collection of research papers. Overall this is definitely not a book written for a general audience! I had to work hard to understand some of the papers, and some of them lost me completely.

However, there’s some great stuff in here that rewards patient study. Some of my favorites that are more generally accessible include:

  • A chapter on “Wiggly Games and Burnside’s Lemma” that does a great job explaining Burnside’s Lemma—a classic result about counting things with symmetry, at the intersection of combinatorics and group theory—via applications to counting the number of possible tiles in several different games.

  • “Solving Puzzles Backwards” has some nice puzzles and a discussion of elegant ways to approach their solutions.

  • “Should we Call Them Flexa-Bands?” has some interesting reflections on the topology of different types of flexagons.

Some other things I particularly enjoyed but which are not so accessible without some background include a chapter on the computational complexity of losing at checkers, a chapter on “Kings, sages, hats, and codes” that I wish I understood better, and a chapter on the combinatorics of Legos.

There’s so much other stuff in there on such wildly varying topics that it’s impossible to summarize. In any case, definitely recommended if you are a professional mathematician looking for some fun yet still technically meaty reading; definitely not recommended if you’re looking for a casual read of a popular math book. And if you’re somewhere in between—that is, you’re not a professional mathematician but you aspire to read and understand things on that level—this could honestly be a great place to start!

About Brent

Assistant Professor of Computer Science at Hendrix College. Functional programmer, mathematician, teacher, pianist, follower of Jesus.
This entry was posted in books, review and tagged , , , , . Bookmark the permalink.

Leave a reply. You can include LaTeX $latex like this$. Note you have to literally write 'latex' after the first dollar sign!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.