### Meta

### Categories

- algebra (47)
- arithmetic (86)
- books (35)
- calculus (7)
- challenges (59)
- combinatorics (29)
- complex numbers (6)
- computation (83)
- convergence (9)
- counting (38)
- famous numbers (49)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (73)
- golden ratio (8)
- group theory (28)
- humor (8)
- induction (8)
- infinity (19)
- iteration (24)
- links (77)
- logic (12)
- meta (43)
- modular arithmetic (30)
- number theory (108)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (106)
- people (23)
- pictures (74)
- posts without words (42)
- primes (57)
- probability (9)
- programming (20)
- proof (93)
- puzzles (18)
- recursion (16)
- review (25)
- sequences (28)
- solutions (31)
- teaching (16)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- June 2021 (3)
- May 2021 (1)
- March 2020 (4)
- February 2020 (1)
- January 2020 (7)
- December 2019 (4)
- November 2019 (2)
- October 2019 (5)
- September 2019 (7)
- August 2019 (3)
- July 2019 (5)
- May 2019 (4)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Category Archives: challenges

## Challenge: area of a parallelogram

And now for something completely different!1 Suppose we have a parallelogram with one corner at the origin, and two adjacent corners at coordinates and . What is the area of the parallelogram? There are probably many different ways to derive … Continue reading

## The Natural Number Game

Hello everyone! It has been quite a while since I have written anything here—my last post was in March 2020, and since then I have been overwhelmed dealing with online and hybrid teaching, plus a newborn (who is now almost … Continue reading

Posted in challenges, computation, proof
Tagged computer, game, Lean, natural, number, proof
6 Comments

## A probabilty puzzle

Suppose that we have surveyed a certain population of people, and have determined the following probabilities: The probability that a person likes anchovies is . The probability that a person likes to read books is . The probability that a … Continue reading

## The wizard’s rational puzzle (solutions, part 2)

At long last, here is the solution I had in mind for the Wizard’s rational puzzle. Recall that the goal is to figure out the numerator and denominator of a secret rational number, if all we are allowed to do … Continue reading

Posted in arithmetic, challenges, logic, programming, puzzles, solutions
Tagged arithmetic, binary, denominator, Euclidean, gcd, logarithm, numerator, puzzle, rational, search, wizard
Comments Off on The wizard’s rational puzzle (solutions, part 2)

## The wizard’s rational puzzle (solutions, part 1)

About two and a half months ago I posted a challenge involving a sadistic math wizard, metal cubes containing rational numbers, and a room full of strange machines. I’ve been remiss in following up with some solutions. (Go read the … Continue reading

Posted in arithmetic, challenges, logic, programming, puzzles, solutions
Tagged arithmetic, denominator, Euclidean, gcd, logarithm, numerator, puzzle, rational, wizard
3 Comments

## The wizard’s rational puzzle (mind your p’s and q’s!)

You have been abducted by a sadistic math wizard (don’t you hate it when that happens?). He ushers you into a plain but cozy-looking room, with a hardwood floor, a few exotic-looking rugs, and wood paneling on the walls. He … Continue reading

Posted in arithmetic, challenges, logic, programming, puzzles
Tagged arithmetic, denominator, numerator, puzzle, rational, wizard
15 Comments

## The curious powers of 1 + sqrt 2

Recently on mathstodon.xyz, Colin Wright posted the following puzzle: What’s the 99th digit to the right of the decimal point in the decimal expansion of ? Of course, it’s simple enough to use a computer to find the answer; any … Continue reading

## Fibonacci’s Problem of the Birds

I have been enjoying reading Keith Devlin’s new book, Finding Fibonacci. I’ll write more about the book later. For now, I just wanted to share a nice problem I learned about which Leonardo Pisano, aka Fibonacci, included in his book … Continue reading

## The route puzzle

While poking around some old files I came across this puzzle: (Click for a larger version.) I didn’t make it, and I have no idea where I got it from (do you know?). But in any case, wherever it comes … Continue reading

Posted in arithmetic, challenges, number theory, proof, puzzles
Tagged cube, perfect, prime, puzzle, route, square, triangular
7 Comments