Category Archives: primes

The Möbius function proof, part 2 (the subset parity lemma)

Continuing from my previous post, we are in the middle of proving that satisfies the same equation as , that is, and that therefore for all , that is, is the sum of all the th primitive roots of unity. … Continue reading

Posted in arithmetic, combinatorics, complex numbers, primes, proof | Tagged , , , , , , , , , | 1 Comment

Factorization diagram cards are here!

It’s been a long process, but factorization diagram cards are finally available for purchase! If you just want to purchase a set right this minute, then click the above link! If you want to learn more, keep reading. History As … Continue reading

Posted in arithmetic, counting, pattern, pictures, primes, teaching | Tagged , , | 2 Comments

Factorization diagram card redesign: feedback welcome!

After getting a printed set of factorization diagram cards, I decided there were a few design tweaks I wanted to make. I’ve gone through a few iterations and I think they are definitely better now. Here are some representative samples … Continue reading

Posted in arithmetic, counting, pattern, pictures, primes, teaching | Tagged , , | 6 Comments

Factorization diagram cards!

I’ve designed a set of factorization diagram cards and had them actually printed. This is one of the first times in my life when I have caused Actual Physical Objects to be created (other than using a printer I guess) … Continue reading

Posted in arithmetic, counting, pattern, pictures, primes, teaching, video | Tagged , , | 5 Comments

MaBloWriMo 16: Recap and outline

We have now established all the facts we will need about groups, and have incidentally just passed the halfway point of MaBloWriMo. This feels like a good time to take a step back and outline what we’ve done so far … Continue reading

Posted in algebra, arithmetic, computation, famous numbers, group theory, iteration, modular arithmetic, number theory, primes | Tagged , , , , , , , , , | 2 Comments

MaBloWriMo 6: The Proof Begins

Today we’re going to start in on proving the Lucas-Lehmer test. Yesterday we saw how, given a Mersenne number , we can define a sequence of integers , with the claim that if and only if is prime. We’re going … Continue reading

Posted in algebra, arithmetic, computation, number theory, primes | Tagged , , , , , , , | 1 Comment

MaBloWriMo 5: The Lucas-Lehmer Test

We now know that can only be prime when is prime; but even when is prime, sometimes is prime and sometimes it isn’t. The Lucas-Lehmer test is a way to tell us whether is prime, for any prime . The … Continue reading

Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes | Tagged , , , , , , | 3 Comments