- algorithm
- approximation
- bar
- binary
- binomial coefficients
- book
- cards
- carnival
- Carnival of Mathematics
- chocolate
- circle
- coins
- complex
- conjecture
- convolution
- counting
- decadic
- decimal
- diagrams
- Dirichlet
- Euclidean
- Euler
- factorization
- Fermat
- fibonacci
- fractal
- game
- games
- gcd
- graph
- groups
- Haskell
- integers
- irrational
- Ivan Niven
- Lagrange
- lehmer
- lucas
- MaBloWriMo
- making
- Mersenne
- moebius
- mu
- nim
- number
- numbers
- objects
- omega
- order
- pi
- powers
- prime
- primes
- primitive
- programming
- proof
- puzzle
- review
- roots
- sequence
- square
- strategy
- sum
- symmetry
- test
- theorem
- tree
- triangular
- two-player
- unit
- unity
- video
- visualization
- X
- zero-sum

### Blogroll

### Fun

### Reference

### Categories

- algebra (46)
- arithmetic (63)
- books (29)
- calculus (7)
- challenges (53)
- combinatorics (12)
- complex numbers (6)
- computation (46)
- convergence (9)
- counting (32)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (56)
- golden ratio (8)
- group theory (26)
- humor (6)
- induction (7)
- infinity (19)
- iteration (24)
- links (74)
- logic (6)
- meta (42)
- modular arithmetic (24)
- number theory (80)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (92)
- people (21)
- pictures (70)
- posts without words (25)
- primes (39)
- probability (6)
- programming (17)
- proof (71)
- puzzles (15)
- recursion (16)
- review (20)
- sequences (28)
- solutions (28)
- teaching (14)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- November 2017 (2)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

### Meta

# Category Archives: primes

## Fermat’s Little Theorem: proof by modular arithmetic

In a previous post I explained four (mostly) equivalent statements of Fermat’s Little Theorem (which I will abbreviate “FlT”—not “FLT” since that usually refers to Fermat’s Last Theorem, whose proof I am definitely not qualified to write about!). Today I … Continue reading

## Four formats for Fermat: correction!

In my previous post I explained three variants on Fermat’s Little Theorem, as well as a fourth, slightly more general variant, which it turns out is often called Euler’s Totient Theorem. Here’s what I said: If and is any integer, … Continue reading

Posted in number theory, primes
Tagged correction, Euler, Fermat, little, prime, theorem, totient
2 Comments

## Four formats for Fermat

In my previous post I mentioned Fermat’s Little Theorem, a beautiful, fundamental result in number theory that underlies lots of things like public-key cryptography and primality testing. (It’s called “little” to distinguish it from his (in)famous Last Theorem.) There are … Continue reading

## Games with factorization diagram cards

Since I published a deck of factorization diagram cards last September, a few teachers have picked up copies of the cards and started using them with their students. I’ve started collecting ideas for games you can play using the cards, … Continue reading

Posted in arithmetic, counting, games, pattern, pictures, primes, teaching
Tagged cards, diagrams, factorization, games, SET, war
4 Comments

## The Möbius function proof, part 2 (the subset parity lemma)

Continuing from my previous post, we are in the middle of proving that satisfies the same equation as , that is, and that therefore for all , that is, is the sum of all the th primitive roots of unity. … Continue reading

Posted in arithmetic, combinatorics, complex numbers, primes, proof
Tagged circle, complex, moebius, mu, primitive, proof, roots, sum, unit, unity
3 Comments

## Factorization diagram cards are here!

It’s been a long process, but factorization diagram cards are finally available for purchase! If you just want to purchase a set right this minute, then click the above link! If you want to learn more, keep reading. History As … Continue reading

Posted in arithmetic, counting, pattern, pictures, primes, teaching
Tagged cards, diagrams, factorization
2 Comments