### Meta

### Categories

- algebra (47)
- arithmetic (86)
- books (35)
- calculus (7)
- challenges (58)
- combinatorics (29)
- complex numbers (6)
- computation (83)
- convergence (9)
- counting (38)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (72)
- golden ratio (8)
- group theory (28)
- humor (8)
- induction (8)
- infinity (19)
- iteration (24)
- links (76)
- logic (12)
- meta (43)
- modular arithmetic (30)
- number theory (108)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (106)
- people (23)
- pictures (74)
- posts without words (42)
- primes (57)
- probability (9)
- programming (20)
- proof (93)
- puzzles (18)
- recursion (16)
- review (25)
- sequences (28)
- solutions (31)
- teaching (16)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- June 2021 (1)
- May 2021 (1)
- March 2020 (4)
- February 2020 (1)
- January 2020 (7)
- December 2019 (4)
- November 2019 (2)
- October 2019 (5)
- September 2019 (7)
- August 2019 (3)
- July 2019 (5)
- May 2019 (4)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Tag Archives: decimal

## Finding the repetend length of a decimal expansion

We’re still trying to find the prefix length and repetend length of the decimal expansion of a fraction , that is, the length of the part before it starts repeating, and the length of the repeating part. In my previous … Continue reading

Posted in computation, group theory, modular arithmetic, number theory, pattern
Tagged decimal, expansion, group theory, rational, repeating, repetend, totient
Comments Off on Finding the repetend length of a decimal expansion

## Finding the prefix length of a decimal expansion

Remember from my previous post that we’re trying to find the prefix length and repetend length of the decimal expansion of a fraction , that is, the length of the part before it starts repeating, and the length of the … Continue reading

## Finding prefix and repetend length

We interrupt your regularly scheduled primality testing to bring you something else fun I’ve been thinking about. It’s well-known that any rational number has a decimal expansion that either terminates, or is eventually periodic—that is, the digits after the decimal … Continue reading

## More fun with infinite decadic numbers

This is the sixth in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does “close to” mean?, The decadic metric, Infinite decadic numbers). Last time I left you … Continue reading

Posted in arithmetic, infinity, number theory
Tagged decadic, decimal, fractions, integers, representation
4 Comments

## More on repetend lengths

In a previous post, I noted that the length of the repetend (repeating portion of the decimal expansion) of a fraction with prime denominator p is at most p-1, and in fact divides p-1. I also said: In fact, there’s … Continue reading

Posted in group theory, number theory, pattern, primes
Tagged decimal, expansion, fractions, length, repetend
6 Comments

## More on decimal expansions

Today, I’d like to answer some of the questions I raised in the Decimal Expansion Zoo: Which decimal expansions terminate, and which are repeating—and how does it relate to the denominator? As we know, the decimal expansion of every rational … Continue reading

## Decimal expansion zoo

In a comment on a previous post about rational numbers and decimal expansions, Steve Gilberg noted: I’ve been fascinated at how any multiple of 1/7 that’s not an integer repeats the same digits in decimal expression, only starting at different … Continue reading

## Rational numbers and decimal expansions

As you may remember from school, rational numbers have a terminating or eventually repeating (periodic) decimal expansion, whereas irrational numbers don’t. So, for example, 0.123123123123…, with 123 repeating forever, is rational (in fact, it is equal to 41/333), whereas something … Continue reading