# Tag Archives: groups

## MaBloWriMo 30: Cyclic subgroups

Today, to wrap things up, we will use Lagrange’s Theorem to prove that if is an element of the group , the order of evenly divides the order of . So we have a group and an element . In … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , | 6 Comments

## MaBloWriMo 29: Equivalence classes are cosets

Today will conclude the proof of Lagrange’s Theorem! Recall that we defined subgroups and left cosets, and defined a certain equivalence relation on a group in terms of a subgroup . Today we’re going to show that the equivalence classes … Continue reading

Posted in algebra, group theory, proof | | Comments Off on MaBloWriMo 29: Equivalence classes are cosets

## MaBloWriMo 28: Equivalence relations are partitions

Today we’ll take a brief break from group theory to prove a fact about equivalence relations, namely, that they are the same as partitions. A partition is a pretty intuitive concept: you take a big set, and cut it up … Continue reading

Posted in algebra, group theory, proof | | 2 Comments

## MaBloWriMo 27: From subgroups to equivalence relations

Again, let be a group and a subgroup of . Then we can define a binary relation on elements of , called , as follows: if and only if there is some such that . That is, for any two … Continue reading

Posted in algebra, group theory, proof | | Comments Off on MaBloWriMo 27: From subgroups to equivalence relations

## MaBloWriMo 26: Left cosets

Let be a group and a subgroup of . Then for each element we can define a left coset of by . That is, is the set we get by combining (on the left) with every element of . For … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , | 1 Comment

## MaBloWriMo 25: Subgroups

So in the remainder of the month, we’ll prove that in any group , the order of each element must evenly divide the order (size) of the group. I said in an earlier post that this is called Lagrange’s Theorem; … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , | 1 Comment

So, where are we? We assumed that is divisible by , but is not prime. We picked a divisor of and used it to define a group , and yesterday we showed that has order in . Today we’ll use … Continue reading

## MaBloWriMo 22: the order of omega, part II

Yesterday, from the assumption that is divisible by , we deduced the equations and which hold in the group . So what do these tell us about the order of ? Well, first of all, the second equation tells us … Continue reading

| Tagged , , , , , , , , , , | 1 Comment

## MaBloWriMo 21: the order of omega, part I

Now we’re going to figure out the order of in the group . Remember that we started by assuming that passed the Lucas-Lehmer test, that is, that is divisible by . Remember that we also showed for all . In … Continue reading

| Tagged , , , , , , , , , , | 2 Comments

## MaBloWriMo 20: the group X star

So, where are we? Recall that we are assuming (in order to get a contradiction) that is not prime, and we picked a smallish divisor (“smallish” meaning ). We then defined the set as that is, combinations of and where … Continue reading

Posted in algebra, arithmetic, group theory, number theory | Tagged , , , | Comments Off on MaBloWriMo 20: the group X star