### Meta

### Categories

- algebra (47)
- arithmetic (86)
- books (35)
- calculus (7)
- challenges (59)
- combinatorics (31)
- complex numbers (6)
- computation (83)
- convergence (9)
- counting (38)
- famous numbers (49)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (73)
- golden ratio (8)
- group theory (28)
- humor (8)
- induction (8)
- infinity (19)
- iteration (24)
- links (77)
- logic (12)
- meta (43)
- modular arithmetic (30)
- number theory (108)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (106)
- people (23)
- pictures (74)
- posts without words (44)
- primes (57)
- probability (9)
- programming (20)
- proof (93)
- puzzles (18)
- recursion (16)
- review (25)
- sequences (28)
- solutions (31)
- teaching (16)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- August 2021 (2)
- June 2021 (3)
- May 2021 (1)
- March 2020 (4)
- February 2020 (1)
- January 2020 (7)
- December 2019 (4)
- November 2019 (2)
- October 2019 (5)
- September 2019 (7)
- August 2019 (3)
- July 2019 (5)
- May 2019 (4)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Tag Archives: integers

## A combinatorial proof: PIE a la mode!

Continuing from my last post in this series, we’re trying to show that , where is defined as which is what we get when we start with a sequence of consecutive th powers and repeatedly take successive differences. Recall that … Continue reading

Posted in arithmetic, combinatorics, proof
Tagged consecutive, difference, function, integers, matching, powers
Comments Off on A combinatorial proof: PIE a la mode!

## A combinatorial proof: counting bad functions

In a previous post we derived the following expression: . We are trying to show that , in order to show that starting with a sequence of consecutive th powers and repeatedly taking successive differences will always result in . … Continue reading

Posted in arithmetic, combinatorics, proof
Tagged consecutive, difference, function, integers, matching, powers
1 Comment

## A combinatorial proof: functions and matchings

We’re trying to prove the following equality (see my previous post for a recap of the story so far): In particular we’re trying to show that the two sides of this equation correspond to two different ways to count the … Continue reading

Posted in arithmetic, combinatorics, proof
Tagged consecutive, difference, function, integers, matching, powers
5 Comments

## A combinatorial proof: the story so far

In my last post I reintroduced this seemingly odd phenomenon: Start with consecutive integers and raise them all to the th power. Then repeatedly take pairwise differences (i.e. subtract the first from the second, and the second from the third, … Continue reading

Posted in arithmetic, combinatorics, proof
Tagged consecutive, difference, integers, powers
1 Comment

## A combinatorial proof: reboot!

More than seven years ago I wrote about a curious phenomenon, which I found out about from Patrick Vennebush: if you start with a sequence of consecutive th powers, and repeatedly take pairwise differences, you always end up with , … Continue reading

Posted in arithmetic, combinatorics, proof
Tagged consecutive, difference, integers, powers
11 Comments

## The Recamán sequence

I recently learned about a really interesting sequence of integers, called the Recamán sequence (it’s sequence A005132 in the Online Encyclopedia of Integer Sequences). It is very simple to define, but the resulting complexity shows how powerful self-reference is (for … Continue reading

Posted in arithmetic, recursion, sequences
Tagged difference, integers, Recamán, repeat, sequence
5 Comments

## Differences of powers of consecutive integers, part II

If you spent some time playing around with the procedure from Differences of powers of consecutive integers (namely, raise consecutive integers to the th power, and repeatedly take pairwise differences until reaching a single number) you probably noticed the curious … Continue reading

Posted in arithmetic, iteration, pascal's triangle
Tagged binomial coefficients, consecutive, difference, integers, powers
3 Comments

## Differences of powers of consecutive integers

Patrick Vennebush of Math Jokes 4 Mathy Folks recently wrote about the following procedure that yields surprising results. Choose some positive integer . Now, starting with consecutive integers, raise each integer to the th power. Then take pairwise differences by … Continue reading

Posted in arithmetic, pattern
Tagged consecutive, difference, integers, powers, surprising
16 Comments

## More fun with infinite decadic numbers

This is the sixth in a series of posts on the decadic numbers (previous posts: A curiosity, An invitation to a funny number system, What does “close to” mean?, The decadic metric, Infinite decadic numbers). Last time I left you … Continue reading

Posted in arithmetic, infinity, number theory
Tagged decadic, decimal, fractions, integers, representation
4 Comments

## The decadic metric

Continuing my series of posts exploring the decadic numbers… in my previous post, I explained that we will define a new “size function”, or metric, different from the usual “absolute value”, and written . Two numbers will be “close to” … Continue reading

Posted in arithmetic, number theory, pattern
Tagged decadic, distance, integers, metric, number line, numbers, p-adic, soup
5 Comments