# Tag Archives: MaBloWriMo

## MaBloWriMo 30: Cyclic subgroups

Today, to wrap things up, we will use Lagrange’s Theorem to prove that if is an element of the group , the order of evenly divides the order of . So we have a group and an element . In … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , | 6 Comments

## MaBloWriMo 29: Equivalence classes are cosets

Today will conclude the proof of Lagrange’s Theorem! Recall that we defined subgroups and left cosets, and defined a certain equivalence relation on a group in terms of a subgroup . Today we’re going to show that the equivalence classes … Continue reading

Posted in algebra, group theory, proof |

## MaBloWriMo 28: Equivalence relations are partitions

Today we’ll take a brief break from group theory to prove a fact about equivalence relations, namely, that they are the same as partitions. A partition is a pretty intuitive concept: you take a big set, and cut it up … Continue reading

Posted in algebra, group theory, proof | | 2 Comments

## MaBloWriMo 27: From subgroups to equivalence relations

Again, let be a group and a subgroup of . Then we can define a binary relation on elements of , called , as follows: if and only if there is some such that . That is, for any two … Continue reading

Posted in algebra, group theory, proof |

## MaBloWriMo 26: Left cosets

Let be a group and a subgroup of . Then for each element we can define a left coset of by . That is, is the set we get by combining (on the left) with every element of . For … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , | 1 Comment

## MaBloWriMo 25: Subgroups

So in the remainder of the month, we’ll prove that in any group , the order of each element must evenly divide the order (size) of the group. I said in an earlier post that this is called Lagrange’s Theorem; … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , | 1 Comment

## MaBloWriMo 24: Bezout’s identity

A few days ago we made use of Bézout’s Identity, which states that if and have a greatest common divisor , then there exist integers and such that . For completeness, let’s prove it. Consider the set of all linear … Continue reading

Posted in algebra, arithmetic, modular arithmetic, number theory | | 2 Comments