### Meta

### Categories

- algebra (46)
- arithmetic (76)
- books (30)
- calculus (7)
- challenges (56)
- combinatorics (21)
- complex numbers (6)
- computation (78)
- convergence (9)
- counting (34)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (71)
- golden ratio (8)
- group theory (28)
- humor (7)
- induction (7)
- infinity (19)
- iteration (24)
- links (76)
- logic (9)
- meta (43)
- modular arithmetic (30)
- number theory (105)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (98)
- people (21)
- pictures (71)
- posts without words (34)
- primes (55)
- probability (6)
- programming (20)
- proof (83)
- puzzles (18)
- recursion (16)
- review (21)
- sequences (28)
- solutions (30)
- teaching (14)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- May 2019 (3)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Tag Archives: omega

## MaBloWriMo 23: contradiction!

So, where are we? We assumed that is divisible by , but is not prime. We picked a divisor of and used it to define a group , and yesterday we showed that has order in . Today we’ll use … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged contradiction, groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
5 Comments

## MaBloWriMo 22: the order of omega, part II

Yesterday, from the assumption that is divisible by , we deduced the equations and which hold in the group . So what do these tell us about the order of ? Well, first of all, the second equation tells us … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
1 Comment

## MaBloWriMo 21: the order of omega, part I

Now we’re going to figure out the order of in the group . Remember that we started by assuming that passed the Lucas-Lehmer test, that is, that is divisible by . Remember that we also showed for all . In … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
2 Comments

## MaBloWriMo 17: X marks the spot

Recall that we are trying to prove that if is divisible by , then is prime. So let’s suppose is divisible by . We’ll prove this by contradiction, so suppose is not prime: if we can derive a contradiction, then … Continue reading

Posted in algebra, arithmetic, group theory, number theory
Tagged groups, MaBloWriMo, omega, proof, X
3 Comments

## MaBloWriMo 16: Recap and outline

We have now established all the facts we will need about groups, and have incidentally just passed the halfway point of MaBloWriMo. This feels like a good time to take a step back and outline what we’ve done so far … Continue reading

Posted in algebra, arithmetic, computation, famous numbers, group theory, iteration, modular arithmetic, number theory, primes
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, prime, proof, summary, test
2 Comments

## MaBloWriMo 9: omega and its ilk

So far, we have defined a sequence of numbers , and showed that where and . This is a big step: the are defined recursively (that is, each is defined in terms of the previous ), but and give us … Continue reading

Posted in algebra, arithmetic, modular arithmetic, number theory
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, prime

## MaBloWriMo 6: The Proof Begins

Today we’re going to start in on proving the Lucas-Lehmer test. Yesterday we saw how, given a Mersenne number , we can define a sequence of integers , with the claim that if and only if is prime. We’re going … Continue reading

Posted in algebra, arithmetic, computation, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, omega, prime, proof, test
1 Comment