- algorithm Apollonian approximation art bar beauty binary binomial coefficients birthday book book review carnival Carnival of Mathematics Cassini chocolate combinatorics complex cookies counting decadic decimal diagrams divisibility elements expansion factorization fibonacci formula fractal game games gasket graph groups Haskell history hyperbinary idempotent identity integers interactive irrational Ivan Niven Lagrange lehmer lucas MaBloWriMo making Mersenne nim number numbers objects omega order pi prime primes problem programming proof puzzle rectangles repunit review sequence square squares strategy subgroups test triangular video visualization X
### Blogroll

### Fun

### Reference

### Categories

- algebra (43)
- arithmetic (56)
- books (28)
- calculus (6)
- challenges (51)
- combinatorics (8)
- complex numbers (5)
- computation (42)
- convergence (9)
- counting (29)
- famous numbers (48)
- fibonacci (18)
- fractals (12)
- games (24)
- geometry (40)
- golden ratio (8)
- group theory (26)
- humor (6)
- induction (7)
- infinity (17)
- iteration (23)
- links (73)
- logic (6)
- meta (40)
- modular arithmetic (24)
- number theory (67)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (72)
- people (20)
- pictures (44)
- posts without words (8)
- primes (31)
- probability (6)
- programming (17)
- proof (60)
- puzzles (11)
- recursion (12)
- review (19)
- sequences (28)
- solutions (28)
- teaching (11)
- trig (3)
- Uncategorized (4)
- video (19)

### Archives

- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

### Meta

# Tag Archives: prime

## The route puzzle

While poking around some old files I came across this puzzle: (Click for a larger version.) I didn’t make it, and I have no idea where I got it from (do you know?). But in any case, wherever it comes … Continue reading

Posted in arithmetic, challenges, number theory, proof, puzzles
Tagged cube, perfect, prime, puzzle, route, square, triangular
7 Comments

## M74207281 is prime!

I’m a bit late to the party, but the Great Internet Mersenne Prime Search has recently announced a newly verified prime number, , with a whopping 22,338,618 decimal digits! This is now the largest known prime number (though of course … Continue reading

## MaBloWriMo 23: contradiction!

So, where are we? We assumed that is divisible by , but is not prime. We picked a divisor of and used it to define a group , and yesterday we showed that has order in . Today we’ll use … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged contradiction, groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
5 Comments

## MaBloWriMo 22: the order of omega, part II

Yesterday, from the assumption that is divisible by , we deduced the equations and which hold in the group . So what do these tell us about the order of ? Well, first of all, the second equation tells us … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
1 Comment

## MaBloWriMo 21: the order of omega, part I

Now we’re going to figure out the order of in the group . Remember that we started by assuming that passed the Lucas-Lehmer test, that is, that is divisible by . Remember that we also showed for all . In … Continue reading

Posted in algebra, group theory, modular arithmetic, number theory, proof
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, order, prime, proof, test, X
2 Comments

## MaBloWriMo 16: Recap and outline

We have now established all the facts we will need about groups, and have incidentally just passed the halfway point of MaBloWriMo. This feels like a good time to take a step back and outline what we’ve done so far … Continue reading

Posted in algebra, arithmetic, computation, famous numbers, group theory, iteration, modular arithmetic, number theory, primes
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, prime, proof, summary, test
2 Comments

## MaBloWriMo 9: omega and its ilk

So far, we have defined a sequence of numbers , and showed that where and . This is a big step: the are defined recursively (that is, each is defined in terms of the previous ), but and give us … Continue reading

Posted in algebra, arithmetic, modular arithmetic, number theory
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, prime