### Meta

### Categories

- algebra (46)
- arithmetic (84)
- books (32)
- calculus (7)
- challenges (57)
- combinatorics (29)
- complex numbers (6)
- computation (82)
- convergence (9)
- counting (36)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (71)
- golden ratio (8)
- group theory (28)
- humor (7)
- induction (8)
- infinity (19)
- iteration (24)
- links (76)
- logic (9)
- meta (43)
- modular arithmetic (30)
- number theory (108)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (105)
- people (23)
- pictures (73)
- posts without words (36)
- primes (57)
- probability (9)
- programming (20)
- proof (90)
- puzzles (18)
- recursion (16)
- review (23)
- sequences (28)
- solutions (31)
- teaching (15)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- November 2019 (2)
- October 2019 (5)
- September 2019 (7)
- August 2019 (3)
- July 2019 (5)
- May 2019 (4)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Tag Archives: prime

## A few words about PWW #27

The images in my last post were particular realizations of the famous Sieve of Eratosthenes. The basic idea of the sieve is to repeatedly do the following: Circle the next number bigger than that is not yet crossed out, call … Continue reading

Posted in pattern, pictures, posts without words, primes
Tagged Eratosthenes, prime, sieve
4 Comments

## Quickly recognizing primes less than 1000: memorizing exceptional composites

In my previous post I wrote about a procedure for testing the primality of any number less than : Test for divisibility by all primes up to , and also . (In practice I test for 2 and 5 first, … Continue reading

## Quickly recognizing primes less than 1000: divisibility tests

I took a little hiatus from writing here since I attended the International Conference on Functional Programming, and since then have been catching up on teaching stuff and writing a bit on my other blog. I gave a talk at … Continue reading

## Quickly recognizing primes less than 100

Recently, Mark Dominus wrote about trying to memorize all the prime numbers under . This is a cool idea, but it made me start thinking about alternative: instead of memorizing primes, could we memorize a procedure for determining whether a … Continue reading

## New Mersenne prime

With impeccable timing, just in the middle of my series about primality testing, a new Mersenne prime has been announced, a little under two years after the previous one. In particular, it has been shown that is prime; this is … Continue reading

## Four formats for Fermat: correction!

In my previous post I explained three variants on Fermat’s Little Theorem, as well as a fourth, slightly more general variant, which it turns out is often called Euler’s Totient Theorem. Here’s what I said: If and is any integer, … Continue reading

Posted in number theory, primes
Tagged correction, Euler, Fermat, little, prime, theorem, totient
4 Comments