### Meta

### Categories

- algebra (47)
- arithmetic (86)
- books (35)
- calculus (7)
- challenges (57)
- combinatorics (29)
- complex numbers (6)
- computation (82)
- convergence (9)
- counting (38)
- famous numbers (48)
- fibonacci (18)
- fractals (13)
- games (34)
- geometry (72)
- golden ratio (8)
- group theory (28)
- humor (8)
- induction (8)
- infinity (19)
- iteration (24)
- links (76)
- logic (12)
- meta (43)
- modular arithmetic (30)
- number theory (108)
- open problems (11)
- paradox (1)
- pascal's triangle (8)
- pattern (106)
- people (23)
- pictures (74)
- posts without words (41)
- primes (57)
- probability (9)
- programming (20)
- proof (92)
- puzzles (18)
- recursion (16)
- review (25)
- sequences (28)
- solutions (31)
- teaching (16)
- trig (3)
- Uncategorized (6)
- video (19)

### Archives

- March 2020 (4)
- February 2020 (1)
- January 2020 (7)
- December 2019 (4)
- November 2019 (2)
- October 2019 (5)
- September 2019 (7)
- August 2019 (3)
- July 2019 (5)
- May 2019 (4)
- April 2019 (2)
- March 2019 (3)
- February 2019 (3)
- January 2019 (4)
- November 2018 (3)
- October 2018 (4)
- September 2018 (4)
- August 2018 (6)
- July 2018 (2)
- June 2018 (5)
- May 2018 (3)
- April 2018 (5)
- March 2018 (4)
- February 2018 (3)
- January 2018 (4)
- December 2017 (3)
- November 2017 (3)
- October 2017 (1)
- September 2017 (1)
- July 2017 (4)
- June 2017 (4)
- May 2017 (9)
- April 2017 (7)
- March 2017 (5)
- February 2017 (4)
- January 2017 (3)
- December 2016 (4)
- November 2016 (6)
- October 2016 (6)
- September 2016 (2)
- August 2016 (5)
- July 2016 (2)
- June 2016 (4)
- May 2016 (4)
- April 2016 (2)
- March 2016 (3)
- February 2016 (9)
- January 2016 (8)
- December 2015 (5)
- November 2015 (29)
- August 2015 (3)
- June 2015 (2)
- April 2015 (1)
- May 2014 (1)
- December 2013 (1)
- October 2013 (1)
- July 2013 (1)
- June 2013 (1)
- May 2013 (1)
- April 2013 (3)
- March 2013 (3)
- February 2013 (2)
- January 2013 (5)
- December 2012 (3)
- November 2012 (4)
- October 2012 (5)
- September 2012 (1)
- August 2012 (4)
- July 2012 (1)
- June 2012 (6)
- May 2012 (2)
- April 2012 (3)
- March 2012 (1)
- February 2012 (4)
- January 2012 (5)
- December 2011 (1)
- November 2011 (7)
- October 2011 (4)
- September 2011 (6)
- July 2011 (2)
- June 2011 (4)
- May 2011 (5)
- April 2011 (2)
- March 2011 (4)
- February 2011 (1)
- January 2011 (1)
- December 2010 (1)
- November 2010 (4)
- October 2010 (2)
- September 2010 (1)
- August 2010 (1)
- July 2010 (1)
- June 2010 (2)
- May 2010 (3)
- April 2010 (1)
- February 2010 (6)
- January 2010 (3)
- December 2009 (8)
- November 2009 (7)
- October 2009 (3)
- September 2009 (3)
- August 2009 (1)
- June 2009 (4)
- May 2009 (5)
- April 2009 (4)
- March 2009 (2)
- February 2009 (1)
- January 2009 (7)
- December 2008 (1)
- October 2008 (2)
- September 2008 (7)
- August 2008 (1)
- July 2008 (1)
- June 2008 (1)
- April 2008 (5)
- February 2008 (4)
- January 2008 (4)
- December 2007 (3)
- November 2007 (12)
- October 2007 (2)
- September 2007 (4)
- August 2007 (3)
- July 2007 (1)
- June 2007 (3)
- May 2007 (1)
- April 2007 (4)
- March 2007 (3)
- February 2007 (7)
- January 2007 (1)
- December 2006 (2)
- October 2006 (2)
- September 2006 (6)
- July 2006 (4)
- June 2006 (2)
- May 2006 (6)
- April 2006 (3)
- March 2006 (6)

# Tag Archives: two-player

## Computing optimal play for the greedy coins game, part 4

Last time I explained a method for computing best play for instances of the greedy coins game, which is feasible even for large games. This general approach is known as dynamic programming and is applicable whenever we have some recursively … Continue reading

Posted in computation, games, recursion
Tagged coins, dynamic, game, optimal, play, programming, proof, recurrence, strategy, tree, two-player, zero-sum

## Computing optimal play for the greedy coins game, part 3

In a previous post we saw how we can organize play sequences in the greedy coins game into a tree. Then in the last post, we saw how to work our way from the bottom of the tree upward and … Continue reading

Posted in computation, games, recursion
Tagged coins, game, optimal, play, proof, recurrence, strategy, tree, two-player, zero-sum
2 Comments

## Computing optimal play for the greedy coins game, part 2

I want to explain in more detail how we can think about computing the best possible score for Alice in the greedy coins game, assuming best play on the part of both players. I glossed over this too quickly in … Continue reading

Posted in computation, games, recursion
Tagged coins, game, optimal, play, proof, recurrence, strategy, tree, two-player, zero-sum
1 Comment

## Computing optimal play for the greedy coins game

Recall the greedy coins game, in which two players alternate removing one of the coins from either end of a row, and the player with the highest total at the end is the winner. What if we wanted to play … Continue reading

Posted in computation, games, recursion
Tagged coins, dynamic programming, game, optimal, play, proof, recurrence, strategy, two-player, zero-sum
2 Comments

## Another greedy coins game update

Another update on the analysis of the greedy coins game (previous posts here, here, and here). I will make another post very soon explaining how to compute optimal play. In my previous post I reported that Thibault Vroonhove had conjectured … Continue reading

Posted in games, proof
Tagged coins, conjecture, game, proof, strategy, two-player, zero-sum

## Greedy coins game update

I plan to write a longer post soon, but for the moment I just wanted to provide a quick update about the greedy coins game (previous posts here and here). It turns out that the game is a lot more … Continue reading

Posted in games, proof
Tagged coins, conjecture, game, proof, strategy, two-player, zero-sum
18 Comments

## Ties in the greedy coins game

In my previous post I described the “greedy coins game” and conjectured that the first player always has a strategy to win or at least tie. I had been unable to prove it, but suspected there must be some nice … Continue reading

## The greedy coins game

Here’s an interesting game I’ve been thinking about.1 There is a row of coins on the table; each coin can have any positive integer value. Two players alternate turns. On a player’s turn she must take one of the two … Continue reading