Suppose is a function defined for positive integers
. Then we can define an infinite series
as follows:
(This might look a bit strange, but bear with me!) For example, suppose for all
. Then
(Note that in this case, with , the infinite sum converges; but often we just use
as a formal placeholder and don’t particularly care about convergence. That is,
is perfectly well defined as an infinite series without worrying about the value of
.)
In fact is called the Dirichlet generating function for
. Of course, this name should remind you of Dirichlet convolution—and it’s no coincidence; Dirichlet convolution and Dirichlet generating functions are closely related. Let’s see how.
Suppose we have two functions and
, and consider multiplying their Dirichlet generating functions (with plain old, regular multiplication):
We have a big (well, infinite) sum of things multiplied by another big sum. By distributivity, we’re going to get a big sum as a result, where each term of the resulting sum is the product of one thing chosen from the left-hand sum and one thing chosen from the right-hand sum. (This is just like FOIL, only way cooler and more infinite-r.) That is, the resulting sum is going to look something like this:
with one term for every possible choice of and
. The
in the denominator is of course equal to
, and we can collect up all the fractions with the same denominator: for each
, we will get a denominator of
in each case where we pick some
and
whose product is
. So we can reorganize the terms in the above sum, grouping together all the terms where the product of
and
is the same, and rewrite it like this (is this starting to look familiar…?):
Now we can factor out the (since it doesn’t depend on
or
), like so:
But the inner sum is now just the definition of the Dirichlet convolution of and
! So the whole thing becomes
And finally, we note that the thing on the right is itself the Dirichlet generating function for . So in summary, we have shown that
Neato! So in some sense, Dirichlet generating functions “turn Dirichlet convolution into regular multiplication”.
These functions (with z for s) are used a lot in signal processing, under the name z-transforms. https://en.m.wikipedia.org/wiki/Z-transform
Hi Rob, thanks for the link! Though after reading about z-transforms I do not think they are the same. Notice that with a z-transform you have something like F(z) = sum_n … z^-n, but with Dirichlet generating functions you have F(s) = sum_n … n^-s . The base and the exponent are switched, which actually makes a very big difference.
Pingback: The Riemann zeta function | The Math Less Traveled
Does this make the Dirichlet Generating function operator a monoid homomorphism from the monoid of
to the Dirichlet convolution monoid?
That’s the right idea but I think it’s the other way around.