Category Archives: proof

The route puzzle

While poking around some old files I came across this puzzle: (Click for a larger version.) I didn’t make it, and I have no idea where I got it from (do you know?). But in any case, wherever it comes … Continue reading

Posted in arithmetic, challenges, number theory, proof, puzzles | Tagged , , , , , , | 7 Comments

Golden numbers are Fibonacci

This post is fourth in a series, proving the curious fact that is a Fibonacci number if and only if one (or both) of or is a perfect square; we call numbers of this form golden numbers. Last time, I … Continue reading

Posted in arithmetic, computation, famous numbers, fibonacci, proof | Tagged , , , , , | 2 Comments

Fibonacci numbers are golden

Recall that a “golden number” (this is not standard terminology) is a number such that one (or both) of or is a perfect square. In this post, I’ll explain Gessel’s proof that every Fibonacci number is golden. First, we need … Continue reading

Posted in arithmetic, computation, famous numbers, fibonacci, proof | Tagged , , , , , | 1 Comment

Testing Fibonacci numbers: the proofs

In my last post I stated this surprising theorem: is a Fibonacci number if and only if one of is a perfect square. If one of is a perfect square, then let’s say that is a “golden number” (a nod, … Continue reading

Posted in arithmetic, computation, famous numbers, fibonacci, proof | Tagged , , , | 1 Comment

The chocolate bar game: losing positions proved

In my last post I claimed that the losing positions for the chocolate bar game are precisely those of the form (or the reverse), that is, in binary, positions where one coordinate is the same as the other with any … Continue reading

Posted in games, pattern, pictures, proof, solutions | Tagged , , , , , , , , | 4 Comments

MaBloWriMo 30: Cyclic subgroups

Today, to wrap things up, we will use Lagrange’s Theorem to prove that if is an element of the group , the order of evenly divides the order of . So we have a group and an element . In … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , | 6 Comments

MaBloWriMo 29: Equivalence classes are cosets

Today will conclude the proof of Lagrange’s Theorem! Recall that we defined subgroups and left cosets, and defined a certain equivalence relation on a group in terms of a subgroup . Today we’re going to show that the equivalence classes … Continue reading

Posted in algebra, group theory, proof | Tagged , , , , , ,