Category Archives: proof

PIE: proof by counting

Recall the setup: we have a universal set and a collection of subsets , , , and so on, up to . PIE claims that we can compute the number of elements of that are in none of the (that … Continue reading

Posted in combinatorics, pattern, proof | Tagged , , , , | Leave a comment

PIE: proof by algebra

In my previous post I stated a very formal, general form of the Principle of Inclusion-Exclusion, or PIE.1 In this post I am going to outline one proof of PIE. I’m not going to give a completely formal proof, because … Continue reading

Posted in combinatorics, induction, pattern, proof | Tagged , , , , , , | 1 Comment

Efficiency of repeated squaring: another proof

In my previous post I proved that the “binary algorithm” (corresponding to the binary expansion of a number ) is the most efficient way to build using only doubling and incrementing steps. Today I want to explain another nice proof, … Continue reading

Posted in computation, proof | Tagged , , , , , , , , | 3 Comments

Efficiency of repeated squaring: proof

My last post proposed a claim: The binary algorithm is the most efficient way to build using only doubling and incrementing steps. That is, any other way to build by doubling and incrementing uses an equal or greater number of … Continue reading

Posted in computation, proof | Tagged , , , , , , , , | 2 Comments

The chromatic number of the plane, part 4: an upper bound

In my previous posts I explained lower bounds for the Hadwiger-Nelson problem: we know that the chromatic number of the plane is at least 5 because there exist unit distance graphs which we know need at least 5 colors. Someday, … Continue reading

Posted in geometry, proof | Tagged , , , , , ,

Iterating squared digit sums in other bases

In a previous post I wrote about iterating the squared digit sum function, which adds up the sum of the squares of the digits of a number; for example, . Denis left a comment asking about other bases—what happens if … Continue reading

Posted in arithmetic, computation, proof | Tagged , , , , | 7 Comments

The chromatic number of the plane, part 3: a new lower bound

In my previous post I explained how we know that the chromatic number of the plane is at least 4. If we can construct a unit distance graph (a graph whose edges all have length ) which needs at least … Continue reading

Posted in geometry, proof | Tagged , , , , , | 1 Comment