
Join 713 other subscribers
Meta
Categories
 algebra (47)
 arithmetic (86)
 books (35)
 calculus (7)
 challenges (59)
 combinatorics (31)
 complex numbers (6)
 computation (83)
 convergence (9)
 counting (38)
 famous numbers (49)
 fibonacci (18)
 fractals (13)
 games (34)
 geometry (73)
 golden ratio (8)
 group theory (28)
 humor (8)
 induction (8)
 infinity (19)
 iteration (24)
 links (77)
 logic (12)
 meta (43)
 modular arithmetic (30)
 number theory (108)
 open problems (11)
 paradox (1)
 pascal's triangle (8)
 pattern (106)
 people (23)
 pictures (74)
 posts without words (44)
 primes (57)
 probability (9)
 programming (20)
 proof (93)
 puzzles (18)
 recursion (16)
 review (25)
 sequences (28)
 solutions (31)
 teaching (16)
 trig (3)
 Uncategorized (6)
 video (19)
Archives
 August 2021 (2)
 June 2021 (3)
 May 2021 (1)
 March 2020 (4)
 February 2020 (1)
 January 2020 (7)
 December 2019 (4)
 November 2019 (2)
 October 2019 (5)
 September 2019 (7)
 August 2019 (3)
 July 2019 (5)
 May 2019 (4)
 April 2019 (2)
 March 2019 (3)
 February 2019 (3)
 January 2019 (4)
 November 2018 (3)
 October 2018 (4)
 September 2018 (4)
 August 2018 (6)
 July 2018 (2)
 June 2018 (5)
 May 2018 (3)
 April 2018 (5)
 March 2018 (4)
 February 2018 (3)
 January 2018 (4)
 December 2017 (3)
 November 2017 (3)
 October 2017 (1)
 September 2017 (1)
 July 2017 (4)
 June 2017 (4)
 May 2017 (9)
 April 2017 (7)
 March 2017 (5)
 February 2017 (4)
 January 2017 (3)
 December 2016 (4)
 November 2016 (6)
 October 2016 (6)
 September 2016 (2)
 August 2016 (5)
 July 2016 (2)
 June 2016 (4)
 May 2016 (4)
 April 2016 (2)
 March 2016 (3)
 February 2016 (9)
 January 2016 (8)
 December 2015 (5)
 November 2015 (29)
 August 2015 (3)
 June 2015 (2)
 April 2015 (1)
 May 2014 (1)
 December 2013 (1)
 October 2013 (1)
 July 2013 (1)
 June 2013 (1)
 May 2013 (1)
 April 2013 (3)
 March 2013 (3)
 February 2013 (2)
 January 2013 (5)
 December 2012 (3)
 November 2012 (4)
 October 2012 (5)
 September 2012 (1)
 August 2012 (4)
 July 2012 (1)
 June 2012 (6)
 May 2012 (2)
 April 2012 (3)
 March 2012 (1)
 February 2012 (4)
 January 2012 (5)
 December 2011 (1)
 November 2011 (7)
 October 2011 (4)
 September 2011 (6)
 July 2011 (2)
 June 2011 (4)
 May 2011 (5)
 April 2011 (2)
 March 2011 (4)
 February 2011 (1)
 January 2011 (1)
 December 2010 (1)
 November 2010 (4)
 October 2010 (2)
 September 2010 (1)
 August 2010 (1)
 July 2010 (1)
 June 2010 (2)
 May 2010 (3)
 April 2010 (1)
 February 2010 (6)
 January 2010 (3)
 December 2009 (8)
 November 2009 (7)
 October 2009 (3)
 September 2009 (3)
 August 2009 (1)
 June 2009 (4)
 May 2009 (5)
 April 2009 (4)
 March 2009 (2)
 February 2009 (1)
 January 2009 (7)
 December 2008 (1)
 October 2008 (2)
 September 2008 (7)
 August 2008 (1)
 July 2008 (1)
 June 2008 (1)
 April 2008 (5)
 February 2008 (4)
 January 2008 (4)
 December 2007 (3)
 November 2007 (12)
 October 2007 (2)
 September 2007 (4)
 August 2007 (3)
 July 2007 (1)
 June 2007 (3)
 May 2007 (1)
 April 2007 (4)
 March 2007 (3)
 February 2007 (7)
 January 2007 (1)
 December 2006 (2)
 October 2006 (2)
 September 2006 (6)
 July 2006 (4)
 June 2006 (2)
 May 2006 (6)
 April 2006 (3)
 March 2006 (6)
Category Archives: iteration
The MacLaurin series for sin(x)
In my previous post I said “recall the MacLaurin series for :” Since someone asked in a comment, I thought it was worth mentioning where this comes from. It would typically be covered in a secondsemester calculus class, but it’s … Continue reading
MaBloWriMo 16: Recap and outline
We have now established all the facts we will need about groups, and have incidentally just passed the halfway point of MaBloWriMo. This feels like a good time to take a step back and outline what we’ve done so far … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, group theory, iteration, modular arithmetic, number theory, primes
Tagged groups, lehmer, lucas, MaBloWriMo, Mersenne, omega, prime, proof, summary, test
2 Comments
MaBloWriMo 8: definition of s and mod
I was a little unsatisfied with my proof yesterday since I don’t think I did a very good job explaining how enters into things. When sinuheancelmo asked a question which seemed to show confusion on exactly that point, I figured … Continue reading
Posted in arithmetic, iteration, modular arithmetic, number theory
Tagged definition, lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
Comments Off on MaBloWriMo 8: definition of s and mod
MaBloWriMo 7: s via omega
Yesterday, I challenged you to prove that where , , and the are defined by and . The proof is by induction on . The base case is just arithmetic: Now suppose that we already know the statement holds for … Continue reading
Posted in algebra, arithmetic, iteration, modular arithmetic, number theory
Tagged induction, lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
11 Comments
MaBloWriMo 5: The LucasLehmer Test
We now know that can only be prime when is prime; but even when is prime, sometimes is prime and sometimes it isn’t. The LucasLehmer test is a way to tell us whether is prime, for any prime . The … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
3 Comments
MaBloWriMo 4: not all primeindex Mersenne numbers are prime
Over the past couple days we saw that if is composite, then is also composite. Equivalently, this means that if we want to be prime, then at the very least must also be prime. But at this point there is … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
1 Comment
MaBloWriMo 3: Mersenne composites in binary
Yesterday we saw that must be composite, since . Today I’ll talk about a somewhat more intuitive way to see this. Recall that we can write numbers in base 2, or “binary”, using the digits 0 and 1 (called “bits”, … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
1 Comment
MaBloWriMo: Mersenne composites
The name of the game is to find Mersenne numbers which are also prime. Today, a simple observation: can only be prime when is also prime. Put conversely, if is composite then is also composite. For example, is composite and … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
1 Comment
MaBloWriMo: The LucasLehmer test
Today, I noticed both Zachary Abel and Qiaochu Yuan plan to write a blog post every day this month (hooray!). I haven’t written on here as much as I would like recently, and so I thought, why not? I already … Continue reading
Posted in algebra, arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, MaBloWriMo, Mersenne, prime, proof, test
5 Comments
Mersenne primes and the LucasLehmer test
Mersenne numbers, named after Marin Mersenne, are numbers of the form . The first few Mersenne numbers are therefore , , , , , and so on. Mersenne numbers come up all the time in computer science (for example, is … Continue reading
Posted in arithmetic, computation, famous numbers, iteration, modular arithmetic, number theory, primes
Tagged lehmer, lucas, Mersenne, prime, test
3 Comments