Category Archives: number theory

The Riemann zeta function and prime numbers

In a previous post I defined the famous Riemann zeta function, Today I want to give you a glimpse of what it has to do with prime numbers—which is a big part of why it is so famous. Consider the … Continue reading

Posted in number theory | Tagged , , , , | 15 Comments

The Basel problem

I wanted to follow up on something I mentioned in my previous post: I claimed that At the time I didn’t know how to prove this, but I did some quick research and today I’m going to explain it! It … Continue reading

Posted in infinity, number theory | Tagged , , , , , | 9 Comments

The Riemann zeta function

Recall from my previous post that given a function , we define , the Dirichlet generating function of , by We also proved that : the product of Dirichlet generating functions is the Dirichlet generating function of the Dirichlet convolution. … Continue reading

Posted in number theory | Tagged , , , , , , , | 2 Comments

Dirichlet generating functions

Suppose is a function defined for positive integers . Then we can define an infinite series as follows: (This might look a bit strange, but bear with me!) For example, suppose for all . Then (Note that in this case, … Continue reading

Posted in number theory | Tagged , , , , , , , | 5 Comments

More fun with Dirichlet convolution

I’m back after a bit of a hiatus for the holidays! Last time we saw how the principle of Möbius inversion arises from considering the function from the point of view of Dirichlet convolution. Put simply, the Möbius function is … Continue reading

Posted in number theory | Tagged , , , , , , | 1 Comment

The route puzzle

While poking around some old files I came across this puzzle: (Click for a larger version.) I didn’t make it, and I have no idea where I got it from (do you know?). But in any case, wherever it comes … Continue reading

Posted in arithmetic, challenges, number theory, proof, puzzles | Tagged , , , , , , | 7 Comments

MaBloWriMo 24: Bezout’s identity

A few days ago we made use of Bézout’s Identity, which states that if and have a greatest common divisor , then there exist integers and such that . For completeness, let’s prove it. Consider the set of all linear … Continue reading

Posted in algebra, arithmetic, modular arithmetic, number theory | Tagged , , , , , , , | 2 Comments